420 research outputs found

    Scattering of Bunched Fractionally Charged Quasiparticles

    Full text link
    The charge of fractionally charged quasiparticles, proposed by Laughlin to explain the fractional quantum Hall effect (FQHE), was recently verified by measurements. Charge q=e/3 and e/5 (e is the electron charge), at filling factors nu=1/3 and 2/5, respectively, were measured. Here we report the unexpected bunching of fractional charges, induced by an extremely weak backscattering potential at exceptionally low electron temperatures (T<10 mK) - deduced from shot noise measurements. Backscattered charges q=nu e, specifically, q=e/3, q=2e/5, and q<3e/7, in the respective filling factors, were measured. For the same settings but at an only slightly higher electron temperature, the measured backscattered charges were q=e/3, q=e/5, and q=e/7. In other words, bunching of backscattered quasiparticles is taking place at sufficiently low temperatures. Moreover, the backscattered current exhibited distinct temperature dependence that was correlated to the backscattered charge and the filling factor. This observation suggests the existence of 'low' and 'high' temperature backscattering states, each with its characteristic charge and characteristic energy.Comment: 4 pages, 3 figure

    Analysis of plasma instabilities and verification of the BOUT code for the Large Plasma Device

    Full text link
    The properties of linear instabilities in the Large Plasma Device [W. Gekelman et al., Rev. Sci. Inst., 62, 2875 (1991)] are studied both through analytic calculations and solving numerically a system of linearized collisional plasma fluid equations using the 3D fluid code BOUT [M. Umansky et al., Contrib. Plasma Phys. 180, 887 (2009)], which has been successfully modified to treat cylindrical geometry. Instability drive from plasma pressure gradients and flows is considered, focusing on resistive drift waves, the Kelvin-Helmholtz and rotational interchange instabilities. A general linear dispersion relation for partially ionized collisional plasmas including these modes is derived and analyzed. For LAPD relevant profiles including strongly driven flows it is found that all three modes can have comparable growth rates and frequencies. Detailed comparison with solutions of the analytic dispersion relation demonstrates that BOUT accurately reproduces all characteristics of linear modes in this system.Comment: Published in Physics of Plasmas, 17, 102107 (2010

    Entanglement, Dephasing, and Phase Recovery via Cross-Correlation Measurements of Electrons

    Full text link
    Determination of the path taken by a quantum particle leads to a suppression of interference and to a classical behavior. We employ here a quantum 'which path' detector to perform accurate path determination in a two-path-electron-interferometer; leading to full suppression of the interference. Following the dephasing process we recover the interference by measuring the cross-correlation between the interferometer and detector currents. Under our measurement conditions every interfering electron is dephased by approximately a single electron in the detector - leading to mutual entanglement of approximately single pairs of electrons.Comment: 13 Pages, 5 Figure

    Energy dynamics in a simulation of LAPD turbulence

    Get PDF
    Energy dynamics calculations in a 3D fluid simulation of drift wave turbulence in the linear Large Plasma Device (LAPD) [W. Gekelman et al., Rev. Sci. Inst. 62, 2875 (1991)] illuminate processes that drive and dissipate the turbulence. These calculations reveal that a nonlinear instability dominates the injection of energy into the turbulence by overtaking the linear drift wave instability that dominates when fluctuations about the equilibrium are small. The nonlinear instability drives flute-like (k∥=0k_\parallel = 0) density fluctuations using free energy from the background density gradient. Through nonlinear axial wavenumber transfer to k∥≠0k_\parallel \ne 0 fluctuations, the nonlinear instability accesses the adiabatic response, which provides the requisite energy transfer channel from density to potential fluctuations as well as the phase shift that causes instability. The turbulence characteristics in the simulations agree remarkably well with experiment. When the nonlinear instability is artificially removed from the system through suppressing k∥=0k_\parallel=0 modes, the turbulence develops a coherent frequency spectrum which is inconsistent with experimental data

    The absorption spectrum around nu=1: evidence for a small size Skyrmion

    Full text link
    We measure the absorption spectrum of a two-dimensional electron system (2DES) in a GaAs quantum well in the presence of a perpendicular magnetic field. We focus on the absorption spectrum into the lowest Landau Level around nu=1. We find that the spectrum consists of bound electron-hole complexes, trion and exciton like. We show that their oscillator strength is a powerful probe of the 2DES spatial correlations. We find that near nu=1 the 2DES ground state consists of Skyrmions of small size (a few magnetic lengths).Comment: To be published in Phys Rev Lett. To be presented in ICSP2004, Flagstaff, Arizona. 4 figures (1 of them in color). 5 page
    • …
    corecore